博客
关于我
数据分析工具Pandas基础--Series的索引操作
阅读量:280 次
发布时间:2019-03-01

本文共 744 字,大约阅读时间需要 2 分钟。

理论:

在数据处理中,Series的索引操作是常见且重要的技能。以下是几种常见的索引方式:

行索引

行索引是通过行的位置来获取数据。Pandas中支持两种方式:

- **直接访问**:`ser_obj[pos]` - **标签访问**:`ser_obj['label']`

切片索引

切片索引用于获取一系列连续的行数据。Pandas支持两种切片方式:

- **位置切片**:`ser_obj[start:end]`,例如`ser_obj[1:3]`获取索引1和2的数据。 - **标签切片**:`ser_obj['label1':'label3']`,注意标签切片是包含终止的。

不连续索引

当需要获取非连续行数据时,可以使用列表形式的索引:

- **标签索引**:`ser_obj[['label1','label2','label3']]` - **位置索引**:`ser_obj[[0,2,4]]`

实验:

第四节 Series的索引操作

import pandas as pdimport numpy as np
# 构建Seriesser_obj = pd.Series(range(5), index=['a','b','c','d','e'])ser_obj
# 行索引示例ser_obj['b']   # 获取标签'b'对应的值ser_obj.loc['b']  # 同样获取标签'b'对应的值
# 切片索引示例ser_obj[1:3]  # 获取索引1和2的数据ser_obj['b':'d']  # 标签切片,包含'd'
# 不连续索引示例ser_obj[[0,2,4]]  # 通过位置获取不连续数据ser_obj[['b','d']]  # 通过标签获取不连续数据

转载地址:http://mcla.baihongyu.com/

你可能感兴趣的文章
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>
numpy数组索引-ChatGPT4o作答
查看>>
NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
查看>>
Numpy矩阵与通用函数
查看>>
numpy绘制热力图
查看>>
numpy转PIL 报错TypeError: Cannot handle this data type
查看>>
Nutch + solr 这个配合不错哦
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>