博客
关于我
数据分析工具Pandas基础--Series的索引操作
阅读量:280 次
发布时间:2019-03-01

本文共 776 字,大约阅读时间需要 2 分钟。

理论:

行索引:

按索引位置:ser_obj[pos]

按索引名称:ser_obj[‘label’]

切片索引:

按索引位置:ser_obj[2:4]

按索引名称:ser_obj[‘label1’: ‘label3’],注意,按索引名切片操作时,是包含终止

不连续索引:

ser_obj[ [‘label1’, ‘label2’, ‘label3’] ]

ser_obj[ [pos1, pos2, pos3] ]

 

实验:

第四节 Series的索引操作

In [1]:

 

 
import pandas as pd
import numpy as np

In [2]:

 

 
# 构建Series
ser_obj = pd.Series(range(5),index=['a','b','c','d','e'])
ser_obj

Out[2]:

a    0b    1c    2d    3e    4dtype: int64

行索引

In [7]:

 

 
ser_obj['b']
ser_obj.loc['b']

Out[7]:

1

In [4]:

 

ser_obj[1]
ser_obj.iloc[]

Out[4]:

1

切片索引

In [5]:

 

 
ser_obj[1:3]

Out[5]:

b    1c    2dtype: int64

In [6]:

 

# 注意区别
ser_obj['b':'d']

Out[6]:

b    1c    2d    3dtype: int64

不连续索引

In [8]:

 

ser_obj[[0,2,4]]

Out[8]:

a    0c    2e    4dtype: int64

In [9]:

 

 
ser_obj[['b','d']]

Out[9]:

b    1d    3dtype: int64

转载地址:http://mcla.baihongyu.com/

你可能感兴趣的文章
MySQL 索引连环问题,你能答对几个?
查看>>
Mysql 索引问题集锦
查看>>
Mysql 纵表转换为横表
查看>>
mysql 编译安装 window篇
查看>>
mysql 网络目录_联机目录数据库
查看>>
MySQL 聚簇索引&&二级索引&&辅助索引
查看>>
Mysql 脏页 脏读 脏数据
查看>>
mysql 自增id和UUID做主键性能分析,及最优方案
查看>>
Mysql 自定义函数
查看>>
mysql 行转列 列转行
查看>>
Mysql 表分区
查看>>
mysql 表的操作
查看>>
mysql 视图,视图更新删除
查看>>
MySQL 触发器
查看>>
mysql 让所有IP访问数据库
查看>>
mysql 记录的增删改查
查看>>
MySQL 设置数据库的隔离级别
查看>>
MySQL 证明为什么用limit时,offset很大会影响性能
查看>>
Mysql 语句操作索引SQL语句
查看>>
MySQL 误操作后数据恢复(update,delete忘加where条件)
查看>>